metric boundedness - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

metric boundedness - translation to ρωσικά

SYMMETRIC RANK (0, 2) TENSOR FIELD ON A SMOOTH MANIFOLD
Relativistic metric; Covariant metric tensor

metric boundedness      

математика

метрическая ограниченность

bounded metric         
  • Diameter of a set.
  • [[Euler diagram]] of types of functions between metric spaces.
  • Q}} on a sphere.
SET EQUIPPED WITH A METRIC (DISTANCE FUNCTION)
Distance function; Metric spaces; Metric topology; Metric geometry; Bounded metric space; Bounded metric; Bounded space; Metric (mathematics); Quasimetric space; Translation-invariant metric; Translation invariant metric; Semi-metric; Semi metric space; Homogeneous metric; Quotient metric space; Semimetric; Postoffice metric; Post office metric; British rail metric; SNCF metric; Quasimetric; Quasi-metric; Premetric space; Prametric; Hemimetric space; Hemimetric; Semimetric space; Hemi-metric; Prametrizable; Distance to a set; Metric distance; General metric; Relation of norms and metrics; Inframetric; Post Office metric; Prametric space; Premetric; Finite metric space; Discrete metric space; Metric Geometry; Distance metric; Pseudoquasimetric space; Pseudo-semimetric; French railway metric; British Rail metric; Norm induced metric; Diameter of a metric space; Generalizations of metric spaces; Metric embeddings

математика

ограниченная метрика

metric system         
  • [[Pavillon de Breteuil]], Saint-Cloud, France, the home of the metric system since 1875
  • [[James Clerk Maxwell]] played a major role in developing the concept of a coherent CGS system and in extending the metric system to include electrical units.
  • The [[metre]] was originally defined to be ''one ten millionth'' of the distance between the [[North Pole]] and the [[Equator]] through [[Paris]].<ref name=Alder />
DECIMAL SYSTEM OF UNITS THAT USES THE METRE AS THE BASIS FOR ITS UNIT OF LENGTH
Metric unit; Metric System; Metric measurement system; The Metric System; Metric conversions; Metric system of measurement; Metric weights and measures; Metrics system; SI symbol; Symbol (metric system); Symbol (metric); Symbols (metric); Symbols (metric system); Metric symbol; Metric symbols; Metric measurements; Mètrique; French metrical system; Metric system of weights and measures

общая лексика

десятичная/метрическая система мер

метрическая система

Ορισμός

metric system
¦ noun the decimal measuring system based on the metre, litre, and gram as units of length, capacity, and weight or mass.

Βικιπαίδεια

Metric tensor

In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold M (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p (that is, a bilinear function that maps pairs of tangent vectors to real numbers), and a metric tensor on M consists of a metric tensor at each point p of M that varies smoothly with p.

A metric tensor g is positive-definite if g(v, v) > 0 for every nonzero vector v. A manifold equipped with a positive-definite metric tensor is known as a Riemannian manifold. Such a metric tensor can be thought of as specifying infinitesimal distance on the manifold. On a Riemannian manifold M, the length of a smooth curve between two points p and q can be defined by integration, and the distance between p and q can be defined as the infimum of the lengths of all such curves; this makes M a metric space. Conversely, the metric tensor itself is the derivative of the distance function (taken in a suitable manner).

While the notion of a metric tensor was known in some sense to mathematicians such as Gauss from the early 19th century, it was not until the early 20th century that its properties as a tensor were understood by, in particular, Gregorio Ricci-Curbastro and Tullio Levi-Civita, who first codified the notion of a tensor. The metric tensor is an example of a tensor field.

The components of a metric tensor in a coordinate basis take on the form of a symmetric matrix whose entries transform covariantly under changes to the coordinate system. Thus a metric tensor is a covariant symmetric tensor. From the coordinate-independent point of view, a metric tensor field is defined to be a nondegenerate symmetric bilinear form on each tangent space that varies smoothly from point to point.

Μετάφραση του &#39metric boundedness&#39 σε Ρωσικά